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What is needed for robots to collaborate with humans? 



• Treat anticipation as a sequence learning problem

• Model spatial correlation between joints within a frame
• Model temporal correlation across joints over a horizon

• Highly stochastic over long-term, with high variations across frame
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Existing Work

• Deterministic: Learns a point estimate over the motion data 
Seq2Seq1, Seq2Seq-SPL2
• Cannot model uncertainties in human motion

• Probabilistic: Learns a distribution over the motion data
HP-GAN3, VAE4

• Separate objective function for learning a distribution
• Requires careful hyper-parameters selection and annealing

6

1J. Martinez, M. J. Black, and J. Romero, “On human motion prediction using recurrent neural networks,” in IEEE CVPR, 2017.
2E. Aksan, M. Kaufmann, and O. Hilliges, “Structured prediction helps 3d human motion modelling,” in IEEE ICCV, 2019
3E. Barsoum, J. Kender, and Z. Liu, “Hp-gan: Probabilistic 3d human motion prediction via gan,” in IEEE CVPRW, 2018
4S. Toyer, A. Cherian, T. Han, and S. Gould, “Human pose forecasting via deep markov models,” in International DICTA, 2017.



Research Gap

• Learning a robust representation of the past motion.
• Improving temporal and spatial correlation in the motion prediction.
• Leveraging the appropriate objective function.
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• In this work, we propose VADER, a novel sequence learning 
framework that
• Learns a robust representation over the observed human motion, 
• Uses the expressive powers of codebooks to learn discrete representations 

over the observed motion data,
• Is not restricted by any static priors,
• Explicitly models interaction in multiple humans via a lightweight attention 

mechanism.
• VADER outperformed previous state-of-the-art approaches across 

three difference scenarios: single-agent, multiple-agent and human-
robot collaboration over short and long-term horizons.

Contributions
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Unified Architecture of VADER

• Our framework augments the encoder-decoder framework with codebook learning and 
distribution matching.

• We use  adversarial training to improve the temporal and spatial coherency by penalizing 
predictions that deviates from the ground-truth distribution.
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To obtain a robust representation over observed trajectory: 
• We extract velocity and acceleration features from position, and explicitly model all three representations.
• The representations are passed to an attention module, that learns a robust characterization

over past observations.
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• We propose the use of a codebook for calculating the latent space, using Vector Quantization. 
• The output of the encoder is used to calculate the discrete latent space using the nearest neighbor lookup 

from the shared embedding space.
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• The decoder learns to condition its output on the previous hidden state(s) and the latent representation, that 
summarize past frames.

• This provides performance gains, particularly over long-term horizons.
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• We use adversarial training to align the prediction with the ground truth.
• The adversarial loss complements the Reconstruction Loss by penalizing predictions that deviate from the 

ground-truth distribution.

13



Quantitative Evaluation

• We evaluated the performance of our framework on two widely used 
human-activity datasets, one social interaction dataset and on data 
collected from human-robot collaboration (HRC) experiments:
• UTD-MHAD for single-agent motion prediction
• NTU-RGBD+D 60 dataset for multi-agent motion prediction
• CMU Panoptic dataset for multi-agent motion prediction
• KTH-HRC dataset on human-robot collaboration experiments

• Our evaluation metric is the Mean Squared Error between the 
ground-truth and the predicted poses at each timestep.
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Results: Single-agent motion prediction 
(UTD-MHAD)

Approaches
Frames

2 4 8 10 13 15

Zero-Velocity 11.31 27.91 68.79 89.09 116.95 133.05

Seq2seq 8.90 19.09 39.03 47.45 57.84 63.30

Seq2seq-SPL 8.17 17.63 36.86 45.02 55.20 60.72

Scalable 6.39 14.33 31.63 39.12 48.57 53.74

VADER 6.61 14.22 29.82 36.23 43.83 47.81

• Our method outperformed state-of-the-art models on majority of the evaluated benchmarks, suggesting 
improved representation learning and sequence modeling.
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Results: Multi-agent motion prediction (NTU 
RGB+D 60 dataset)

Approaches
Frames

2 4 8 10 13 15

Joint Learning 9.68 15.84 29.88 37.52 49.55 57.93

Joint Learning 
+ Social 9.71 15.97 30.36 38.25 50.70 59.39

Scalable 9.66 15.66 29.05 36.16 47.20 54.84

VADER 9.65 15.48 28.57 35.64 46.71 54.39

• For multi-agent motion prediction, our method outperformed state-of-the-art models on all evaluated 
benchmarks, suggesting that  the attention mechanism at the decoder can best represent the inter-agent 
dynamics among all the agents.
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Results: Multi-agent motion prediction (CMU 
Panoptic dataset)

Approaches
Frames

2 4 8 10 13 15

Joint Learning 1.334 2.29 4.15 5.09 6.55 7.56

Joint Learning 
+ Social

1.396 2.39 4.35 5.35 6.87 7.90

Scalable 1.327 2.22 3.94 4.79 6.07 6.94

VADER 1.321 2.19 3.84 4.66 5.89 6.75

• For multi-agent motion prediction, our method outperformed state-of-the-art models on all evaluated 
benchmarks, suggesting that  the attention mechanism at the decoder can best represent the inter-agent 
dynamics among all the agents.
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Results: Human-Robot Collaboration (KTH-
HRC) 

Approaches
Frames

5 10 20 30 35 40

Zero-
Velocity

0.11 0.34 1.18 2.38 3.07 3.81

Seq2seq 0.18 0.55 1.67 3.11 3.91 4.74

Seq2seq-SPL 0.17 0.42 1.20 2.33 2.98 3.66

Scalable 0.06 0.20 0.72 1.61 2.21 2.91

VADER 0.06 0.20 0.69 1.55 2.15 2.88

• Our method outperformed state-of-the-art models on all evaluated benchmarks, suggesting improved 
representation learning and sequence modeling.
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Results: Ablation Study

Approaches
Frames

2 4 8 10 13 15

VADER w. TCN 
encoder-decoder

9.68 19.71 37.27 44.02 52.35 57.21

VADER with TCN 
encoder

7.85 16.29 33.49 40.68 49.47 54.27

VADER w/o GAN 
objective

8.08 16.76 33.57 40.39 48.54 52.87

VADER w/o 
attention

10.19 22.21 45.26 54.78 66.85 73.92

VADER 6.61 14.22 29.82 36.23 43.83 47.81
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Summary

• We proposed VADER, a novel sequence-learning approach that seeks 
to overcome some of the longstanding challenges of motion 
prediction.
• In VADER, we proposed the use of vector quantization to learn a 

discrete latent space, with no restrictions of a static prior
• Next, we proposed using the discriminator loss to compliment the 

MSE objective to improve the accuracy of motion prediction.
• Finally, to account for the interdependence of human motion, we 

incorporated a lightweight attention mechanism to condition 
predictions on other humans
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VADER: Vector-Quantized Generative 
Adversarial Network for Motion Prediction
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